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Abstract. A discrete SchrGdinger operator with off-diagonal disorder is subject to 
the effects of frustration more usually associated with spin-glass theory. It is shown 
that the bands coincide with those of the corresponding ordered system, but Lifshitz 
tails occur a t  the band edges. On the contrary, the Saxon-Hutner conjecture and 
diagrammatic analysis would lead to misleading suggestions about the spectrum. 

1. Introduction 

A standard model in the theory of disordered solids is the Anderson model (Anderson 
1958, Simon 1985) with diagonal disorder V W ( n )  as a tight-binding Hamiltonian 

where n is a d-dimensional vector with integer components denoting a position on a 
lattice and uj E Zd is the vector with 1 in the j t h  coordinate and 0 otherwise. VW 
denotes the random realisation of the potential. 

Important questions concerning HW are: 

(i) Where is the spectrum (band and edges)? 
(iii) How much spectrum is there (density of states)? 
(iii) What kind of spectrum is there (localised or extended states)? 

We consider the first two questions for the Hamiltonian with off-diagonal disorder 

with 

(2') 
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where condition (2’) guarantees the self-adjointness of the Hamiltonian. The ordered 
crystal with period 1 in every direction aj fulfils the condition 

e:,j = ej e .  3 = -e -3 (3) 

and has a spectrum which coincides with that of the standard case 6,  = . . . = 8, = 0,  
namely the interval [-2d,2d]. This follows from the gauge transformation for the 
generalised eigenfunctions y(n) = z(n)exp[-i(nlQ, + . . . + n,B,)]. For every random 
one-dimensional Hamiltonian (2) there also exists a gauge transformation which maps 
(2) onto the standard Hamiltonian with 8, = 0. In that case the transformation 
becomes y(n) = z(n) exp[-i(e, ,  + . .  . + 1 9 : - ~ , ~ ) ) .  But for d 2 2 and general random 
Ox,j. such a gauge transformation cannot be found due to  frustration, a gauge-invariant 
notion from spin-glass theory (Toulouse 1977). Frustration in our problem means that  
for a n  elementary plaquette (n, n + ai, n + ai + uj , n + uj) the sum 

does not vanish. The consequences of this fact for the spectrum of (2) are discussed in 
section 4, whereas sections 2 and 3 are respectively devoted to the quest,ions of where 
such a Hamiltonian arises and how one can get wrong suggestions about its spectrum. 

At the end of the int!roduction the notion of off-diagonal disorder should be made 
more precise. The  easiest assumption is that the random variable t?& is independently 
and identically distributed for j E (1,. . . , d ) .  If, for example, can only take the 
values 0 and T then the resulting Hamiltonian looks very similar to  the fJ-spin-glass 
model (Toulouse 1977). But the assumption of an independent distribution is unnec- 
essarily strong. The  most natural physical condition is the ergodicity of the disorder, 
i.e. the indecomposability of the underlying spatial homogeneous probability measure 
(Endrullis and Englisch 1984, section 1). The ergodicity guarantees the self-averaging 
of such spectral quantities as the bands and the density of states. But, for example, pe- 
riodic off-diagonal terms can be considered as given by a very special ergodic measure 
(Endrullis and Englisch, section 2.1). Since one expects that  statements concerning 
the size of the bands and the behaviour of the density of states a t  the band edges 
only hold for typical disorder, ergodicity is too weak an assumption for our purposes. 
For simplicity we will consider in this paper only independent identically distributed 
disorder. With the notion of the occupation property (Englisch 1983) an extension of 
the results concerning the bands is easy. A more specialised model has already been 
treated, e.g., by Wegner (1980). 

2. The origin of the model 

The  problem of frustration occurs in a remarkably large number of tight-binding 
Hamiltonians. Perhaps the simplest is the ordered two-dimensional (2D) triangular 
lattice. With all off-diagonal matrix elements between nearest neighbours equal to  
unity, the spectrum is the interval [-3,6], rather than [ -6 ,G]  as one might naively 
expect. In order to  construct an eigenvector corresponding to -G it would be nec- 
essary for i t  to  change sign between each pair of neighbours; clearly impossible on a 
triangular lattice. 

In fact the problem will occur on any lattice containillg odd numbered rings of 
atoms, including all close-packed lattices. Another important class of solids subject 
to  this form of frustration is formed by glasses and amorphous semiconductors. 
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Another source of frustration is due to magnetic fields, which are usually intro- 
duced into a tight-binding model through the Peierls (Luttinger 1951, Harper 1955) 
factor in which 

m = m', n = n ' f  1 
ym,n)(m',n')  Vo ex~(fine'l') m = m' f 1, n = R' (5) {: otherwise 

where (m,n) represent sites on a 2D square lattice and is the magnetic flux in an 
elementary plaquette. 

In an obvious generalisation (2) above, with random eW,,jl represents a system 
containing random magnetic fields, e.g. due to magnetic impurities. 

A related system is one involving spin-orbit coupling (Jungling and Oppermann 
1980). In this cme the off-diagonal matrix element in (2) maps onto a 2 x 2 matrix 
Vu,,, which is subject to the constraint 

where (c,d) can take the values *l only, and V* represents the complex conjugate 
of V .  The four spin states belonging to two neighbouring sites now form a frustrated 
plaquette for which the the sum of phases, defined in (4),  is an odd multiple of T .  

3. Misleading approaches 

In an ordered but frustrated system, the impossibility of constructing an antiferro- 
magnetic state or anything approaching such a state implies that the spectrum is 
significantly narrower than the interval {-2, Z}, where Z is the connectivity of the 
lattice. Is this also true for a glass or for a system frustrated due to off-diagonal 
disorder? In this paper we are concentrating on the latter case represented by (2).  
We believe, however, that the results are more general. 

3.1. Diagrammatic analysis 

The density of states can be investigated by studying the trace of the resolvent or 
Green function defined in terms of matrices G and H by 

where z = E + iq. This can be expanded in the form 

G ( z )  = z-l+ z-'H"G(z) 
- - + Z - l H W Z - l  + Z - l H W Z - l H W Z - l  

+ Z - l ~ ~ Z - l ~ ~ Z - l ~ w Z - l  + . . . 
CO 

TI G ( t )  = L-' z-"% {(H")"} 
n=O 

which can be visualised as a sum over all possible walks around the lattice which 
return to  their starting point. 
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Our Hamiltonian contains only off-diagonal matrix elements between nearest 
neighbours and these have the form exp(i0) uniformly distributed around the unit 
circle. In this case the only terms which survive averaging of (8c) are those which 
contain the product of each matrix element with its complex conjugate. This implies 
that each bond must be traversed in both directions or not at  all. The simplest class 
of terms in (8c) which fulfil this condition are those which take N steps from the origin 
and then return along the same path. Note in particular that terms involving simple 
loops always average to zero. 

Compare now the Bethe lattice (Bethe 1935) or Cayley tree (Cayley 1889) of the 
same coordination, 2d, as the system we are considering. Since the Bethe lattice 
contains no rings of atoms, all the terms in ( 8 b )  must consist of contributions from 
bonds which are traversed in both directions. In fact for each term in the expansion 
for the Bethe lattice there is a corresponding term in the expansion of H". We are 
thus in a position to  carry out a partial summation of (8c) for this group of terms. 

Using the renormalised perturbation expansion technique (Economou, 1983) the 
diagonal element of the Green function on a particular site of the Bethe lattice G(z) 
can be written in terms of the truncated Green function G'(z) on the neighbouring 
site. This is defined in terms of the series (8) above except that original site is excluded 
from all terms in the summation. Hence 

G(z) = [ z  - 2dG'(z)]- '. (9) 

Note however that if any single site is excluded from the sum then all sites beyond 
that site are also automatically excluded. Thus G'(z) represents the Green function 
at the end of a tree from which a complete branch has been removed, so that the end 
site is (2d - 1)-fold coordinated whereas all other sites remain 2d-fold coordinated. 
Equation (9) could be interpreted as describing the process of joining 2d truncated 
trees together to  form a completely 2d-fold coordinated tree. 

In a similar way it is possible to join (2d - 1) truncated trees together to form 
another truncated tree. In this case however the old and new trees will be identical 
since they are both infinite but truncated trees. Hence we can write 

G'(z)  = [ z  - (2d - l)G'(z)]-' ( loa)  
1 t f Jt2 - 4(2d - 1) - _  

- 2  (2d - 1) 

1 (2d - 2)" - 2 4 % '  - 4(2d - 1)]'12 G ( z )  = -- 
2 22 - ( 2 4 2  

This approximation yields a spectrum in the interval [-Jm, d-1 
rather than [ -2d,24.  

It remains to identify those terms in (8c) which are not included in the Bethe 
approximation. Such terms must depend on the ring structure of the lattice but still 
contain each step in both directions. On a square lattice the simplest such term has 
the form 

which consists of a walk round the ring 0 + 1 + 2 -+ 3 -, 0 followed by the ring 
0 -+ 4 -+ 5 -+ 6 3 0. The first ring is then traversed in reverse followed by the 
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second ring again in reverse. This term arises in 16th order of the expansion ( 8 ~ ) .  
At this order there are 48 such terms compared with 20 275 660 for the Bethe lattice. 
This latter figure was calculated by expanding (9) using the computer algebra system 
muMATH (Rich and Stoutmeyer 1982, Wooff and Hodgkinson 1987). 

We may conclude therefore that the Bethe lattice represents a very good approxi- 
mation for the behaviour of the density of states of H". However, the terms we have 
identified which are not correctly taken into account may be associated with multiple 
scattering from small clusters. We should expect therefore that localised states will 
not be correctly reproduced. 

3.2. The  Saxon-Hutner conjecture 
While the foregoing analysis suggests a band which is too small, the ideas presented 
now actually lead to  the correct band, but to too large a density of states at the band 
edges. 

The density of states N ( E )  of periodic Hamiltonians at a band edge E,  has the 
form 

N ( E )  N cdmdI21E - EbI-1+d/2 (11) 
where cd is a dimension-dependent constant and m the effective mass, whereas typi- 
cally disordered Hamiltonians have the Lifshitz asymptotics (Lifshitz 1065) 

N ( E )  - exp(-clE - (12) 
Originally the Saxon-Hutner conjecture (Saxon and Hutner 1949) states that an en- 
ergy lies in the gap of an alloy if it lies in a gap for all pure crystals built from the 
constituents of the alloy. It has been known for a long time that this conjecture is 
not generally true (cf Englisch 1983), the correct statement was given independently 
by Kirsch and Martinelli (1982) and by Englisch and Kursten (1984) (we neglect the 
closure of the union of all a(H"Per)): 

E $2 a ( H " )  iff for all H W p e r  E e a ( H W p e r )  (13) 
where a denotes the spectrum and HWper is an arbitrary periodic realisation with 
periods which are multiples equivalent to that of the elementary cell. At first reading 
there may appear to be no difference between these two statements. The difference 
lies in the size of the periods: Saxon and Hutner consider only periodic realisations 
with a period coinciding with the elementary cell. It is possible for energy intervals to  
exist at which there are states in the alloy and only in some of the periodic realisations 
with larger period, but not in any of the periodic realisations with period being the 
elementary cell. 

The Saxon-Hutner conjecture is connected with the density of states through the 
classification of the Soviet school (Lifshitz et a1 1982) into fluctuating band edges with 
asymptotics (12) and stable band edges with asymptotics (11). The second case can 
also occur in random systems if the energy considered is a band edge for all periodic 
realisations of the disorder with arbitrary lengths of the periods. 

We saw in the introduction that -2d and 2d are the band edges for (2)+(3), 
i.e. crystals with period 1 in every direction aj. Following the intuition of Lifshitz 
(1965) one could believe that (2) with random has a stable band cdge wit,li the 
asymptotics (11). But the counter-example in the next section shows tliat. m e  cannot 
neglect periodic realisations with larger periods when differentiating bct \VPW ( 1  1 )  and 
(12). 
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4. The bands and Lifshitz tails for frustrated SchrGdinger operators 

H Englisch and A Mnch'innon 

From relation (13) and the knowledge of the spectrum for (2)+(3), we can immediately 
conclude [-2d,24 E: o(H") for random In order to prove 

a(HW) = [-2d,2d] (14) 

we have to  show the inverse conclusion: 

Lemma. 

where y denotes a vector whose elements are y ( n )  and yt is its Hermitian conjugate. 

Proof. 
help of the transformation y(n)  = ~(n)(--l)~i~"'+~d: 

We only show the first inequality, the second follows from the first with the 

n 

= 2dyty (15) 

according to  the inequality 

In (16) we have an equality iff a = b*.  Therefore, in (15) the equality holds iff for 
all n and j 

Considering an elementary plaquette it is obvious that (17) cannot be satisfied 
simultaneously for all n and j if (4) differs from 0 for at least one triple (n, i , j ) .  

Here we see that the analogy with the frustration in spin-glass theory is very tight. 
Frustration, in our framework, not only means the absence of a global gauge transfor- 
mation, but also the impossibility of a simultaneous minimisation of all summands in 
an energy expression. 

In order to prove in our model the lower bound for N ( E )  in (12) ,  one can follow the 
ideas of Simon (1985) by choosing boxes with nearly no frustration. We expect that 
the upper bound in (12) is also correct, though we cannot directly adopt the proof 
by Simon (1985). There a decrease of the potential leads to a decrease of ytHWy, 
whereas an increase of frustration tends to shrink the spectrum from both sides. 

Let us consider for d = 2 the Hamiltonian (2) with 

for n1 even 
for n1 odd k E [ O ,  TI. e:,l = o 
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The direct integral decomposition given by Reed and Simon (1978, theorem 13.97) 
also applies to the case of operators with off-diagonal periodicity. The eigenvalue 
equation for (2) in the elementary cell ( 0 , l )  x (0) with generalised periodic boundary 
conditions 

Y(" + 2a,)  = e x P ( q Y ( 4  Y(" + .2) = exp(iiJ,)y(n) (19) 

has the form 

0 = det 

(20) 

1 -2~0~21z  - E 
-1 - exp(-i6,) 

-1 - exp(i6,) 
-2cos(6, + k) - E 

= E2+4cos( fk)cos(21~+ f k ) E + 4 ~ o s ~ ( $ k ) ~ o s ~ ( 2 1 ~ +  fk) 

( 
- 4sin2(fk)sin2(6, + frk) - 2 - 2cos6, 

E = -2cos(+k) cos(d2 + f k )  rt {4sin2(ik)[1 - cos2(d2 + ik)] + 2 + 
The lower band edge is found for 21, = 0 and a minus sign before the square root. The 
corresponding value for 6, is either given by .z = cos(z9, + ik) = 1, i.e. by 6, = -$k, 
or for an optimal t E ( -1 , l )  as the solution of the equation for the first derivative 

dE/dz = -2cos(ik) +4s in2($k) t [4+4s in2( ik ) (1  - z ~ ) ] - ~ / '  = 0 (21) 

i.e. for 

6 1 I f 2  k > 2 sin-' (2 - 2) 

The lower band edge E ,  for 6 contradicting (22) is 

E, = -2 cos( 4k) - 2 (24) 

and for k fulfilling (22) 

[I + sin2(fk)]1/2 
sin f k  

E, = -2 (25) 

E, is an increasing function of k, the frustration according to formula (4). The upper 
band edge E,, equals -E,, which follows either from a gauge transformation or directly 
from (15) with the plus sign before the root and with a added to the former 21,. We 
restricted IC to  [0, a] since for k E [T,  27r] the Hamiltonian is equivalent to that with 
k = 27r - k. For the maximal frustration k = 1 the band is the minimal interval 
[ -2f i ,2 f i ] ,  where we have at E = 0 a zero in the density of states. Remembering 
that for periodic Hamiltonians the density of states is proportional to the measure of 
the set {(e1, d 2 ) }  with fixed E (Reed and Simon 1978, theorem 13.101) we get E = 0 
only for 6 ,  = T and 6, = +a in formula (14). 

Let us finally mention that the band edge E, does not generally appear for periodic 
boundary conditions as in the familiar case of Schrodinger operators with periodic 
potential (cf Simon 1985, theorem 13.89e) for an argument which also applies to 
d = 2. Similar examples as (17) can also be treated for d > 2. 
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5. Conclusions 

In analysing the properties of the frustrated Schrodinger operator represented by (2) 
we have derived two apparently contradictory conclusions. 

(i) The density of states is very well represented by that of the Bethe Lattice which 
has band edges a t  E = f 2 d n .  

(ii) The Saxon-Hutner conjecture and related arguments show that the rigorous 
bounds on the spectrum are at  E = &2d. 

Except for the trivial case d = 1 the former argument gives a band which is too narrow. 
The true form of the density of states is probably such that there is an apparent 

band edge, represented by a very rapid fall in the density of states, at  E PZ ic2dm 
with a weak Lifshitz tail out to E = h 2 d .  Although we have studied a particular model 
we believe that this behaviour is a general property of frustrated random Hamiltonians. 
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